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Abstract. Market smiles and skews are usually managed by using local volatility models a la Dupire. We discover that
the dynamics of the market smile predicted by local vol models is opposite of observed market behavior: when the price of
the underlying decreases, local vol models predict that the smile shifts to higher prices; when the price increases, these models
predict that the smile shifts to lower prices. Due to this contradiction between model and market, delta and vega hedges derived
from the model can be unstable and may perform worse than naive Black-Scholes’ hedges.

To eliminate this problem, we derive the SABR model, a stochastic volatility model in which the forward value satis…es

dF̂ = âF̂¯dW1

dâ = ºâdW2

and the forward F̂ and volatility â are correlated: dW1dW2 = ½dt. We use singular perturbation techniques to obtain the
prices of European options under the SABR model, and from these prices we obtain explicit, closed-form algebraic formulas for
the implied volatility as functions of today’s forward price f = F̂ (0) and the strike K . These formulas immediately yield the
market price, the market risks, including vanna and volga risks, and show that the SABR model captures the correct dynamics
of the smile. We apply the SABR model to USD interest rate options, and …nd good agreement between the theoretical and
observed smiles.
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1. Introduction. European options are often priced and hedged using Black’s model, or, equivalently,
the Black-Scholes model. In Black’s model there is a one-to-one relation between the price of a European
option and the volatility parameter ¾B . Consequently, option prices are often quoted by stating the implied
volatility ¾B , the unique value of the volatility which yields the option’s dollar price when used in Black’s
model. In theory, the volatility ¾B in Black’s model is a constant. In practice, options with di¤erent strikes
K require di¤erent volatilities ¾B to match their market prices. See …gure 1. Handling these market skews
and smiles correctly is critical to …xed income and foreign exchange desks, since these desks usually have
large exposures across a wide range of strikes. Yet the inherent contradiction of using di¤erent volatilities
for di¤erent options makes it di¢cult to successfully manage these risks using Black’s model.

The development of local volatility models by Dupire [2], [3] and Derman-Kani [4], [5] was a major
advance in handling smiles and skews. Local volatility models are self-consistent, arbitrage-free, and can
be calibrated to precisely match observed market smiles and skews. Currently these models are the most
poThis model was featured at a Risk conference in 2000, and istherefore in the public domain. So post away.
Of course any mentioning of my name in public or publications would be welcome since I am still trying to
establish my reputation.pular way of managing smile and skew risk. However, as we shall discover in section
2, the dynamic behavior of smiles and skews predicted by local vol models is exactly opposite the behavior
observed in the marketplace: when the price of the underlying asset decreases, local vol models predict that
the smile shifts to higher prices; when the price increases, these models predict that the smile shifts to lower
prices. In reality, asset prices and market smiles move in the same direction. This contradiction between
the model and the marketplace tends to de-stabilize the delta and vega hedges derived from local volatility
models, and often these hedges perform worse than the naive Black-Scholes’ hedges.

To resolve this problem, we derive the SABR model, a stochastic volatility model in which the asset price
and volatility are correlated. Singular perturbation techniques are used to obtain the prices of European
options under the SABR model, and from these prices we obtain a closed-form algebraic formula for the
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implied volatility as a function of today’s forward price f and the strike K. This closed-form formula for
the implied volatility allows the market price and the market risks, including vanna and volga risks, to be
obtained immediately from Black’s formula. It also provides good, and sometimes spectacular, …ts to the
implied volatility curves observed in the marketplace. See …gure 1.1. More importantly, the formula shows
that the SABR model captures the correct dynamics of the smile, and thus yields stable hedges.
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Fig. 1.1. Implied volatility for the June 99 Eurodol lar options. Shown are close-of-day values along with the volatilities
predicted by the SABR model. Data taken from Bloomberg information services on March 23, 1999.

2. Reprise. Consider a European call option on an asset A with exercise date tex, settlement date tset,
and strike K . If the holder exercises the option on tex , then on the settlement date tset he receives the
underlying asset A and pays the strike K . To derive the value of the option, de…ne F̂ (t) to be the forward
price of the asset for a forward contract that matures on the settlement date tset , and de…ne f = F̂ (0) to be
today’s forward price. Also let D(t) be the discount factor for date t; that is, let D(t) be the value today
of $1 to be delivered on date t. In Appendix A the fundamental theorem of arbitrage free pricing [6], [7] is
used to develop the theoretical framework for European options. There it is shown that the value of the call
option is

(2.1a) Vcall = D(tset)
n
E [F̂ (tex)¡K]+ jF0

o
;

and the value of the corresponding European put is

Vput = D(tset)E
n
[K ¡ F̂ (tex)]+ jF0

o
(2.1b)

´ Vcall +D(tset)[K ¡ f]:

Here the expectation E is over the forward measure, and “jF0” can be interpretted as “given all information
available at t = 0.” See Appendix A. In Appendix A it is also shown that the forward price F̂ (t) is a
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Martingale under the forward measure. Therefore, the Martingale representation theorem implies that F̂ (t)
evolves according to

(2.1c) dF̂ = C(t; ¤)dW; F̂ (0) = f ;

for some coe¢cient C(t; ¤), where dW is Brownian motion in this measure. The coe¢cient C (t; ¤) may be
deterministic or random, and may depend on any information that can be resolved by time t. This is as far
as the fundamental theory of arbitrage free pricing goes. In particular, one cannot determine the coe¢cient
C(t; ¤) on purely theoretical grounds. Instead one must postulate a mathematical model for C (t;¤):

European swaptions …t within an indentical framework. Consider a European swaption with exercise
date tex and …xed rate (strike) Rfix . Let Rs(t) be the swaption’s forward swap rate as seen at date t, and
let R0 = R̂s(0) be the forward swap rate as seen today. In Appendix A we show that the value of a payer
swaption is

(2.2a) Vpay = L0E
n
[R̂s(tex)¡Rf ix ]+ jF0

o
;

and the value of a receiver swaption is

Vrec = L0E
n
[Rf ix ¡ R̂s(tex)]+jF0

o
(2.2b)

´ Vpay + L0[Rf ix ¡R0]:

Here L0 is today’s value of the level (annuity ), which is a known quantity, and E is the expectation over
the level measure of Jamshidean [9]. In Appendix A it is also shown that the forward swap rate R̂s(t) is a
Martingale in this measure, so once again

(2.2c) dR̂s = C (t; ¤)dW; R̂s(0) = R0;

where dW is Brownian motion. As before, the coe¢cient C(t; ¤)may be deterministic or random, and cannot
be determined from fundamental theory. Apart from notation, this is identical to the framework provided by
equations 2.1a - 2.1c for European calls and puts. Caplets and ‡oorlets can also be included in this picture,
since they are just one period payer and receiver swaptions. For the remainder of the paper, we adopt the
notation of 2.1a - 2.1c for general European options.

2.1. Black’s model and implied volatilities. To go any further requires postulating a model for the
coe¢cient C (t;¤). In [10], Black postulated that the coe¢cient C(t; ¤) is ¾BF̂ (t), where the volatilty ¾B is
a constant. The forward price F̂ (t) is then geometric Brownian motion:

(2.3) dF̂ = ¾B F̂ (t)dW; F̂ (0) = f:

Evaluating the expected values in 2.1a, 2.1b under this model then yields Black’s formula,

Vcall = D(tset)ffN (d1)¡KN(d2)g;(2.4a)

Vput = Vcall +D(tset)[K ¡ f ];(2.4b)

where

(2.4c) d1;2 =
log f=K § 1

2
¾2Btex

¾B
p
tex

;

for the price of European calls and puts, as is well-known [10], [11], [12].
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All parameters in Black’s formula are easily observed, except for the volatility ¾B ..An option’s implied
volatility is the value of ¾B that needs to be used in Black’s formula so that this formula matches the market
price of the option. Since the call (and put) prices in 2.4a - 2.4c are increasing functions of ¾B , the volatility
¾B implied by the market price of an option is unique. Indeed, in many markets it is standard practice to
quote prices in terms of the implied volatility ¾B ; the option’s dollar price is then recovered by substituting
the agreed upon ¾B into Black’s formula.

The derivation of Black’s formula presumes that the volatility ¾B is a constant for each underlying asset
A. However, the implied volatility needed to match market prices nearly always varies with both the strike
K and the time-to-exercise tex . See …gure 2.1. Changing the volatility ¾B means that a di¤erent model is
being used for the underlying asset for each K and tex . This causes several problems managing large books
of options.

The …rst problem is pricing exotics. Suppose one needs to price a call option with strike K1 which has,
say, a down-and-out knock-out at K2 < K1. Should we use the implied volatility at the call’s strike K1, the
implied volatility at the barrier K2, or some combination of the two to price this option? Clearly, this option
cannot be priced without a single, self-consistent, model that works for all strikes without “adjustments.”
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Fig. 2.1. Implied volatility ¾B(K) as a function of the strike K for 1 month, 3 month, 6 month, and 12 month European
options on an asset with forward price 100.

The second problem is hedging. Since di¤erent models are being used for di¤erent strikes, it is not
clear that the delta and vega risks calculated at one strike are consistent with the same risks calculated at
other strikes. For example, suppose that our 1 month option book is long high strike options with a total
¢ risk of +$1MM , and is long low strike options with a ¢ of ¡$1MM . Is our is our option book really
¢-neutral, or do we have residual delta risk that needs to be hedged? Since di¤erent models are used at
each strike, it is not clear that the risks o¤set each other. Consolidating vega risk raises similar concerns.
Should we assume parallel or proportional shifts in volatility to calculate the total vega risk of our book?
More explicitly, suppose that ¾B is 20% at K = 100 and 24% at K = 90, as shown for the 1m options in
…gure 2.1. Should we calculate vega by bumping ¾B by, say, 0:2% for both options? Or by bumping ¾B by
0:2% for the …rst option and by 0:24% for the second option? These questions are critical to e¤ective book
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management, since this requires consolidating the delta and vega risks of all options on a given asset before
hedging, so that only the net exposure of the book is hedged. Clearly one cannot answer these questions
without a model that works for all strikes K.

The third problem concerns evolution of the implied volatility curve ¾B(K). Since the implied volatility
¾B depends on the strike K, it is likely to also depend on the current value f of the forward price: ¾B =
¾B(f ;K ). In this case there would be systematic changes in ¾B as the forward price f of the underlying
changes See …gure 2.1. Some of the vega risks of Black’s model would actually be due to changes in the price
of the underlying asset, and should be hedged more properly (and cheaply) as delta risks.

2.2. Local volatility models. An apparent solution to these problems is provided by the local volatil-
ity model of Dupire [2], which is also attributed to Derman [4], [5]. In an insightful work, Dupire essentially
argued that Black was to bold in setting the coe¢cient C (t; ¤) to ¾BF̂ . Instead one should only assume that
C is Markovian: C = C(t; F̂ ). Re-writing C(t; F̂ ) as ¾loc(t; F̂ )F̂ then yields the “local volatility model,”
where the forward price of the asset is

(2.5a) dF̂ = ¾loc(t; F̂ )F̂ dW; F̂ (0) = f ;

in the forward measure. Dupire argued that instead of theorizing about the unknown local volatility function
¾loc(t; F̂ ), one should obtain ¾loc(t; F̂ ) directly from the marketplace by “calibrating” the local volatility
model to market prices of liquid European options.

In calibration, one starts with a given local volatility function ¾loc(t; F̂ ), and evaluates

Vcall = D(tset)E
n
[F̂ (tex)¡K]+ jF̂ (0) = f ;

o
(2.5b)

´ Vput +D(tset)(f ¡K)(2.5c)

to obtain the theoretical prices of the options; one then varies the local volatility function ¾loc(t; F̂ ) until
these theoretical prices match the actual market prices of the option for each strike K and exercise date
tex . In practice liquid markets usually exist only for options with speci…c exercise dates t1ex; t

2
ex ; t

3
ex; : : :; for

example, for 1m, 2m, 3m, 6m, and 12m from today. Commonly the local vols ¾loc(t; F̂ ) are taken to be
piecewise constant in time:

¾loc(t; F̂ ) = ¾
(1)
loc(F̂ ) for t < t1ez ;

¾loc(t; F̂ ) = ¾
(j)
loc(F̂ ) for tj¡1ex < t < tjez j = 2; 3; :::J(2.6)

¾loc(t; F̂ ) = ¾
(J )
loc (F̂ ) for t > tJez

One …rst calibrates ¾(1)loc(F̂ ) to reproduce the option prices at t
1
ex for all strikes K , then calibrates ¾

(2)
loc(F̂ ) to

reproduce the option prices at t2ex , for all K, and so forth . This calibration process can be greatly simpli…ed
by using the results in [13] and [14]. There we solve to obtain the prices of European options under the
local volatility model 2.5a - 2.5c, and from these prices we obtain explicit algebraic formulas for the implied
volatility of the local vol models.

Once ¾loc(t; F̂ ) has been obtained by calibration, the local volatility model is a single, self-consistent
model which correctly reproduces the market prices of calls (and puts) for all strikes K and exercise dates tex
without “adjustment.” Prices of exotic options can now be calculated from this model without ambiguity.
This model yields consistent delta and vega risks for all options, so these risks can be consolidated across
strikes. Finally, perturbing f and re-calculating the option prices enables one to determine how the implied
volatilites change with changes in the underlying asset price. Thus, the local volatility model thus provides
a method of pricing and hedging options in the presence of market smiles and skews. It is perhaps the
most popular method of managing exotic equity and foreign exchange options. Unfortunately, the local
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volatility model predicts the wrong dynamics of the implied volatility curve, which leads to inaccruate and
often unstable hedges.

To illustrate the problem, consider the special case in which the local vol is a function of F̂ only:

(2.7) dF̂ = ¾loc(F̂ )F̂dW; F̂ (0) = f:

In [13] and [14] singular perturbation methods were used to analyze this model. There it was found that
European call and put prices are given by Black’s formula 2.4a - 2.4c with the implied volatility

(2.8) ¾B(K; f ) = ¾ loc(
1
2 [f +K])

½
1 + 1

24

¾00loc(
1
2
[f +K ])

¾loc(
1
2[f +K ])

(f ¡K )2 + ¢ ¢ ¢ :

On the right hand side, the …rst term dominates the solution and the second term provides a much smaller
correction The omitted terms are very small, usually less than 1% of the …rst term.

The behavior of local volatility models can be largely understood by examining the …rst term in 2.8.
The implied volatility depends on both the strikeK and the current forward price f: So supppose that today
the forward price is f0 and the implied volatility curve seen in the marketplace is ¾0B(K). Calibrating the
model to the market clearly requires choosing the local volatility to be

(2.9) ¾loc(F̂ ) = ¾
0
B(2F̂ ¡ f0)f1 + ¢ ¢ ¢ g:

Now that the model is calibrated, let us examine its predictions. Suppose that the forward value changes
from f0 to some new value f . From 2.8, 2.9 we see that the model predicts that the new implied volatility
curve is

(2.10) ¾B(K; f ) = ¾
0
B(K + f ¡ f0)f1 + ¢ ¢ ¢ g

for an option with strike K, given that the current value of the forward price is f. In particular, if the
forward price f0 increases to f , the implied volatility curve moves to the left ; if f0 decreases to f , the
implied volatility curve moves to the right. Local volatility models predict that the market smile/skew moves
in the opposite direction as the price of the underlying asset. This is opposite to typical market behavior,
in which smiles and skews move in the same direction as the underlying.

To demonstrate the problem concretely, suppose that today’s implied volatility is a perfect smile

(2.11a) ¾0B(K) = ® + ¯[K ¡ f0]2

around today’s forward price f0. Then equation 2.8 implies that the local volatility is

(2.11b) ¾loc(F̂ ) = ®+ 3¯(F̂ ¡ f0)2 + ¢ ¢ ¢ :
As the forward price f evolves away from f0 due to normal market ‡uctuations, equation 2.8 predicts that
the implied volatility is

(2.11c) ¾B(K; f ) = ® + ¯[K ¡ ( 3
2
f0 ¡ 1

2
f )]2 + 3

4
¯(f ¡ f0)2 + ¢ ¢ ¢ :

. The implied volatility curve not only moves in the opposite direction as the underlying, but the curve also
shifts upward regardless of whether f increases or decreases. Exact results are illustrated in …gures 2.2 - 2.4.
There we assumed that the local volatility ¾loc(F̂ ) was given by 2.11b, and used …nite di¤erence methods to
obtain essentially exact values for the option prices, and thus implied volatilites.

Hedges calculated from the local volatility model are wrong. To see this, let BS(f ;K; ¾B ; tex) be Black’s
formula 2.4a - 2.4c for, say, a call option. Under the local volatility model, the value of a call option is given
by Black’s formula

(2.12a) Vcall = BS(f;K; ¾B(K; f ); tex)
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Fig. 2.2. Exact implied volatility ¾B(K;f0) (solid line) obtained from the local volatility ¾loc(F̂ ) (dashed line):
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Fig. 2.3. Implied volatility ¾B(K;f ) if the forward price decreases from f0 to f (solid line).

with the volatility ¾B(K; f ) given by 2.8. Di¤erentiating with respect to f yields the ¢ risk

(2.12b) ¢ ´ @Vcall
@f

=
@BS

@f
+
@BS

@¾B

@¾B(K; f )

@f
:

predicted by the local volatility model. The …rst term is clearly the ¢ risk one would calculate from Black’s
model using the implied volatility from the market. The second term is the local volatility model’s correction
to the ¢ risk, which consists of the Black vega risk multiplied by the predicted change in ¾B due to changes
in the underlying forward price f . In real markets the implied volatily moves in the opposite direction as
the direction predicted by the model. Therefore, the correction term needed for real markets should have
the opposite sign as the correction predicted by the local volatility model. The original Black model yields
more accurate hedges than the local volatility model, even though the local vol model is self-consistent across
strikes and Black’s model is inconsistent.

Local volatility models are also peculiar theoretically. Using any function for the local volatility ¾ loc(t; F̂ )
except for a power law,

C (t; ¤) = ®(t)F̂¯ ;(2.13)

¾loc(t; F̂ ) = ®(t)F̂
¯=F̂ = ®(t)=F̂ 1¡¯ ;(2.14)
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Fig. 2.4. Implied volatility ¾B(K;f ) if the forward prices increases from f0 to f (solid line).

introduces an intrinsic “length scale” for the forward price F̂ into the model. That is, the model becomes
inhomogeneous in the forward price F̂ . Although intrinsic length scales are theoretically possible, it is di¢cult
to understand the …nancial origin and meaning of these scales [15], and one naturally wonders whether such
scales should be introduced into a model without speci…c theoretical justi…cation.

2.3. The SABR model. The failure of the local volatility model means that we cannot use a Markov-
ian model based on a single Brownian motion to manage our smile risk. Instead of making the model
non-Markovian, or basing it on non-Brownian motion, we choose to develop a two factor model. To select
the second factor, we note that most markets experience both relatively quiescent and relatively chaotic
periods. This suggests that volatility is not constant, but is itself a random function of time. Respecting the
preceding discusion, we choose the unknown coe¢cient C (t; ¤) to be ®̂F̂ ¯ , where the “volatility” ®̂ is itself a
stochastic process. Choosing the simplest reasonable process for ®̂ now yields the “stochastic-®¯½ model,”
which has become known as the SABR model. In this model, the forward price and volatility are

(2.15a) dF̂ = ®̂F̂ ¯ dW1; F̂ (0) = f

(2.15b) d®̂ = º®̂ dW2; ®̂(0) = ®

under the forward measure, where the two processes are correlated by:

(2.15c) dW1 dW2 = ½dt:

Many other stochastic volatility models have been proposed, for example [16], [17], [18], [19]; these models
will be treated in section 5. However, the SABR model has the virtue of being the simplest stochastic
volatility model which is homogenous in F̂ and ®̂. We shall …nd that the SABR model can be used to
accurately …t the implied volatility curves observed in the marketplace for any single exercise date tex . More
importantly, it predicts the correct dynamics of the implied volatility curves. This makes the SABR model
an e¤ective means to manage the smile risk in markets where each asset only has a single exercise date; these
markets include the swaption and caplet/‡oorlet markets.

As written, the SABR model may or may not …t the observed volatility surface of an asset which has
European options at several di¤erent exercise dates; such markets include foreign exchange options and
most equity options. Fitting volatility surfaces requires the dynamic SABR model which is introduced and
analyzed in section 4.
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It has been claimed by many authors that stochastic volatility models are models of incomplete markets,
because the stochastic volatility risk cannot be hedged. This is not true. It is true that the risk to changes
in ®̂ (the vega risk) cannot be hedged by buying or selling the underlying asset. However, vega risk can be
hedged by buying or selling options on the asset in exactly the same way that ¢-hedging is used to neutralize
the risks to changes in the price F̂ . In practice, vega risks are hedged by buying and selling options as a
matter of routine, so whether the market would be complete if these risks were not hedged is a moot question.

The SABR model 2.15a - 2.15c is analyzed in Appendix B. There singular perturbation techniques are
used to obtain the prices of European options. From these prices, the options’ implied volatility ¾B(K; f ) is
then obtained. The upshot of this analysis is that under the SABR model, the price of European options is
given by Black’s formula,

Vcall = D(tset)ffN (d1)¡KN(d2)g;(2.16a)

Vput = Vcall +D(tset)[K ¡ :f ];(2.16b)

with

(2.16c) d1;2 =
log f=K § 1

2¾
2
Btex

¾B
p
tex

;

where the implied volatility ¾B(f;K) is given by

¾B(K; f ) =
®

(fK )(1¡¯)=2
n
1 +

(1¡¯)2
24 log2 f=K +

(1¡¯)4
1920 log4 f=K + ¢ ¢ ¢

o ¢ µ z

x(z)

¶
¢

½
1 +

·
(1¡¯)2
24

®2

(fK)1¡¯
+ 1

4

½¯º®

(fK )(1¡¯)=2
+ 2¡3½2

24
º 2
¸
tex + ¢ ¢ ¢ :(2.17a)

Here

(2.17b) z =
º

®
(fK )(1¡¯)=2 log f=K;

and x(z) is de…ned by

(2.17c) x(z) = log

(p
1 ¡ 2½z + z2 + z ¡ ½

1 ¡ ½

)
:

For the special case of at-the-money options, options struck at K = f , this formula reduces to

(2.18) ¾ATM = ¾B(f; f ) =
®

f (1¡¯)

½
1 +

·
(1¡¯)2
24

®2

f 2¡2¯
+ 1

4

½¯®º

f (1¡¯)
+ 2¡3½2

24
º2
¸
tex + ¢ ¢ ¢ :

These formulas are the main result of this paper. Although it appears formidable, the formula is explicit
and only involves elementary trignometric functions. Implementing the SABR model for vanilla options is
very easy, since once this formula is programmed, we just need to send the options to a Black pricer.In the
next section we examine the qualitative behavior of this formula, and how it can be used to managing smile
risk.

The complexity of the formula is needed for accurate pricing. Omitting the last line of 2.17a, for example,
can result in a relative error that exceeds three per cent in extreme cases. Although this error term seems
small, it is large enough to be required for accurate pricing. The omitted terms “+ ¢ ¢ ¢” are much, much
smaller. Indeed, even though we have derived more accurate expressions by continuing the perturbation
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expansion to higher order, 2.17a - 2.17c is the formula we use to value and hedge our vanilla swaptions, caps,
and ‡oors. We have not implemented the higher order results, believing that the increased precision of the
higher order results is super‡uous.

There are two special cases of note: ¯ = 1, representing a stochastic log normal model), and ¯ = 0,
representing a stochastic normal model. The implied volatility for these special cases is obtained in the last
section of Appendix B.

3. Managing smile risk. The complexity of the above formula for ¾B(K; f ) obscures the qualitative
behavior of the SABR model. To make the model’s phenomenology and dynamics more transparent, note
that formula 2.17a - 2.17c can be approximated as

¾B(K;f ) =
®

f 1¡¯
©
1 ¡ 1

2 (1¡ ¯ ¡ ½¸) logK=f(3.1a)

+ 1
12

£
(1 ¡ ¯ )2 + (2 ¡ 3½2)¸2¤ log2K=f + ¢ ¢ ¢ ;

provided that the strike K is not too far from the current forward f . Here the ratio

(3.1b) ¸ =
º

®
f 1¡¯

measures the strength º of the volatility of volatility (the “volvol”) compared to the local volatility ®=f 1¡¯

at the current forward. Although equations 3.1a - 3.1b should not be used to price real deals, they are
accurate enough to depict the qualitative behavior of the SABR model faithfully.

As f varies during normal trading, the curve that the ATM volatility ¾B (f; f ) traces is known as the
backbone, while the smile and skew refer to the implied volatility ¾B (K; f ) as a function of strike K for
a …xed f. That is, the market smile/skew gives a snapshot of the market prices for di¤erent strikes K at
a given instance, when the forward f has a speci…c price. Figures 3.1 and 3.2. show the dynamics of the
smile/skew predicted by the SABR model.
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Fig. 3.1. Backbone and smiles for ¯ = 0. As the forward f varies, the implied volatiliity ¾B (f; f ) of ATM options
traverses the backbone (dashed curve). Shown are the smiles ¾B(K;f ) for three di¤erent values of the forward. Volatility data
from 1 into 1 swaption on 4/28/00, courtesy of Cantor-Fitzgerald.

Let us now consider the implied volatility ¾B(K;f ) in detail. The …rst factor ®=f 1¡¯ in 3.1a is the
implied volatility for at-the-money (ATM) options, options whose strike K equals the current forward f .
So the backbone traversed by ATM options is essentially ¾B(f; f ) = ®=f 1¡¯ for the SABR model. The
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Fig. 3.2. Backbone and smiles as above, but for ¯ = 1.

backbone is almost entirely determined by the exponent ¯ , with the exponent ¯ = 0 (a stochastic Gaussian
model) giving a steeply downward sloping backbone, and the exponent ¯ = 1 giving a nearly ‡at backbone.

The second term ¡ 1
2 (1 ¡ ¯ ¡ ½¸) logK=f represents the skew, the slope of the implied volatility with

respect to the strike K . The ¡ 1
2 (1 ¡ ¯) logK=f part is the beta skew, which is downward sloping since

0· ¯ · 1. It arises because the “local volatility” ®̂F̂ ¯=F̂ 1 = ®̂=F̂ 1¡¯ is a decreasing function of the
forward price. The second part 1

2
½¸ logK=f is the vanna skew, the skew caused by the correlation between

the volatility and the asset price. Typically the volatility and asset price are negatively correlated, so on
average, the volatility ® would decrease (increase) when the forward f increases (decreases). It thus seems
unsurprising that a negative correlation ½ causes a downward sloping vanna skew.

It is interesting to compare the skew to the slope of the backbone. As f changes to f 0 the ATM vol
changes to

(3.2a) ¾B(f
0; f 0) =

®

f 1¡¯
f1¡ (1¡ ¯) f

0 ¡ f
f

+ ¢ ¢ ¢ g:

Near K = f , the ¯ component of skew expands as

(3.2b) ¾B(K; f ) =
®

f 1¡¯
f1 ¡ 1

2 (1¡ ¯)
K ¡ f
f

+ ¢ ¢ ¢ g;

so the slope of the backbone ¾B (f; f ) is twice as steep as the slope of rthe smile ¾B(K; f ) due to the
¯-component of the skew.

The last term in 3.1a also contains two parts. The …rst part 1
12
(1 ¡ ¯)2 log2K=f appears to be a smile

(quadratic) term, but it is dominated by the downward sloping beta skew, and, at reasonable strikes K , it
just modi…es this skew somewhat. The second part 1

12
(2¡ 3½2)¸2 log2K=f is the smile induced by the volga

(vol-gamma) e¤ect. Physically this smile arises because of “adverse selection”: unusually large movements
of the forward F̂ happen more often when the volatility ® increases, and less often when ® decreases, so
strikes K far from the money represent, on average, high volatility environments.

3.1. Fitting market data. The exponent ¯ and correlation ½ a¤ect the volatility smile in similar
ways. They both cause a downward sloping skew in ¾B(K; f) as the strike K varies. From a single market
snapshot of ¾B(K;f ) as a function of K at a given f , it is di¢cult to distinguish between the two parameters.

11



This is demonstrated by …gure 3.3. There we …t the SABR parameters ®; ½; º with ¯ = 0 and then re-…t the
parameters ®; ½; º with ¯ = 1. Note that there is no substantial di¤erence in the quality of the …ts, despite
the presence of market noise. This matches our general experience: market smiles can be …t equally well
with any speci…c value of ¯. In particular, ¯ cannot be determined by …tting a market smile since this would
clearly amount to “…tting the noise.”
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Fig. 3.3. Implied volatilities as a function of strike. Shown are the curves obtained by …tting the SABR model with
exponent ¯ = 0 and with ¯ =1 to the 1y into 1y swaption vol observed on 4/28/00. As usual, both …ts are equally good. Data
courtesy of Cantor-Fitzgerald.

Figure 3.3 also exhibits a common data quality issue. Options with strikes K away from the current
forward f trade less frequently than at-the-money and near-the-money options. Consequently, as K moves
away from f , the volatility quotes become more suspect because they are more likely to be out-of-date and
not represent bona …de o¤ers to buy or sell options.

Suppose for the moment that the exponent ¯ is known or has been selected. Taking a snapshot of the
market yields the implied volatility ¾B(K; f ) as a function of the strike K at the current forward price f .
With ¯ given, …tting the SABR model is a straightforward procedure. The three parameters ®; ½; and º
have di¤erent e¤ects on the curve: the parameter ® mainly controls the overall height of the curve, changing
the correlation ½ controls the curve’s skew, and changing the vol of vol º controls how much smile the curve
exhibits. Because of the widely seperated roles these parameters play, the …tted parameter values tend to
be very stable, even in the presence of large amounts of market noise.

The exponent ¯ can be determined from historical observations of the “backbone” or selected from
“aesthetic considerations.” Equation 2.18 shows that the implied volatility of ATM options is

(3.3) log ¾B(f ;f ) = log ®¡ (1¡ ¯ ) log f + log
½
1 + [ (1¡¯)

2

24

®2

f 2¡2¯
+ 1

4

½¯®º

f (1¡¯)
+ 2¡3½2

24
º 2]tex + ¢ ¢ ¢ :

¾
The exponent ¯ can be extracted from a log log plot of historical observations of f; ¾ATM pairs. Since both f
and ® are stochastic variables, this …tting procedure can be quite noisy, and as the [¢ ¢ ¢ ]tex term is typically
less than one or two per cent, it is usually ignored in …tting ¯.
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Selecting ¯ from “aesthetic” or other a priori considerations usually results in ¯ = 1 (stochastic lognor-
mal), ¯ = 0 (stochastic normal), or ¯ = 1

2 (stochastic CIR) models. Proponents of ¯ = 1 cite log normal
models as being “more natural.” or believe that the horizontal backbone best represents their market. These
proponents often include desks trading foreign exchange options. Proponents of ¯ = 0 usually believe that a
normal model, with its symmetric break-even points, is a more e¤ective tool for managing risks, and would
claim that ¯ = 0 is essential for trading markets like Yen interest rates, where the forwards f can be nega-
tive or near zero. Proponents of ¯ = 1

2
are usually US interest rate desks that have developed trust in CIR

models.
It is usually more convenient to use the at-the-money volatility ¾ATM ; ¯; ½; and º as the SABR parame-

ters instead of the original parameters ®,¯; ½; º:The parameter ® is then found whenever needed by inverting
2.18 on the ‡y; this inversion is numerically easy since the [¢ ¢ ¢ ]tex term is small. With this parameterization,
…tting the SABR model requires …tting ½ and º to the implied volatility curve, with ¾ATM and ¯ given. In
many markets, the ATM volatilities need to be updated frequently, say once or twice a day, while the smiles
and skews need to be updated infrequently, say once or twice a month. With the new parameterization,
¾ATM can be updated as often as needed, with ½, º (and ¯) updated only as needed.

Let us apply SABR to options on US dollar interest rates. There are three key groups of European
options on US rates: Eurodollar future options, caps/‡oors, and European swaptions. Eurodollar future
options are exchange-traded options on the 3 month Libor rate; like interest rate futures, EDF options are
quoted on 100(1¡ rLibor). Figure 1.1 …ts the SABR model (with ¯ = 1) to the implied volatility for the June
99 contracts, and …gures 3.4 - 3.7 …t the model (also with ¯ = 1) to the implied volatility for the September
99, December 99, and March 00 contracts. All prices were obtained from Bloomberg Information Services
on March 23, 1999. Two points are shown for the same strike where there are quotes for both puts and calls.
Note that market liquidity dries up for the later contracts, and for strikes that are too far from the money.
Consequently, more market noise is seen for these options.
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Fig. 3.4. Volatility of the Sep 99 EDF options

Caps and ‡oors are sums of caplets and ‡oorlets; each caplet and ‡oorlet is a European option on the 3
month Libor rate. We do not consider the cap/‡oor market here because the broker-quoted cap prices must
be “stripped” to obtain the caplet volatilities before SABR can be applied.

A m year into n year swaption is a European option with m years to the exercise date (the maturity);
if it is exercised, then one receives an n year swap (the tenor, or underlying) on the 3 month Libor rate.
See Appendix A. For almost all maturities and tenors, the US swaption market is liquid for at-the-money
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Fig. 3.5. Volatility of the Dec 99 EDF options
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Fig. 3.6. Volatility of the Mar 00 EDF options

swaptions, but is ill-liquid for swaptions struck away from the money. Hence, market data is somewhat
suspect for swaptions that are not struck near the money. Figures 3.8 - 3.11 …ts the SABR model (with
¯ = 1) to the prices of m into5Y swaptions observed on April 28, 2000. Data supplied courtesy of Cantor-
Fitzgerald.

We observe that the smile and skew depend heavily on the time-to-exercise for Eurodollar future options
and swaptions. The smile is pronounced for short-dated options and ‡attens for longer dated options; the
skew is overwhelmed by the smile for short-dated options, but is important for long-dated options. This
picture is con…rmed tables 3.1 and 3.2. These tables show the values of the vol of vol º and correlation ½
obtained by …tting the smile and skew of each “m into n” swaption, again using the data from April 28,
2000. Note that the vol of vol º is very high for short dated options, and decreases as the time-to-exercise
increases, while the correlations starts near zero and becomes substantially negative. Also note that there
is little dependence of the market skew/smile on the length of the underlying swap; both º and ½ are fairly
constant across each row. This matches our general experience: in most markets there is a strong smile for
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Fig. 3.7. Volatility of the Jun 00 EDF options

3M into 5Y
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Fig. 3.8. Volatilities of 3 month into 5 year swaption

short-dated options which relaxes as the time-to-expiry increases; consequently the volatility of volatility º
is large for short dated options and smaller for long-dated options, regardless of the particular underlying.
Our experience with correlations is less clear: in some markets a nearly ‡at skew for short maturity options
develops into a strongly downward sloping skew for longer maturities. In other markets there is a strong
downward skew for all option maturities, and in still other markets the skew is close to zero for all maturities.

3.2. Managing smile risk. After choosing ¯ and …tting ½, º , and either ® or ¾ATM , the SABR model

(3.4a) dF̂ = ®̂F̂ ¯ dW1; F̂ (0) = f

(3.4b) d®̂ = º®̂ dW2; ®̂(0) = ®

with

(3.4c) dW1 dW2 = ½dt
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Fig. 3.9. Volatilities of 1 year into 1 year swaptions

5Y into 5Y
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Fig. 3.10. Volatilities of 5 year into 5 year swaptions

…ts the smiles and skews observed in the market quite well, especially considering the quality of price quotes
away from the money . Let us take for granted that it …ts well enough. Then we have a single, self-consistent
model that …ts the option prices for all strikes K without “adjustment,” so we can use this model to price
exotic options without ambiguity. The SABR model also predicts that whenever the forward price f changes,
the the implied volatility curve shifts in the same direction and by the same amount as the price f . This
predicted dynamics of the smile matches market experience. If ¯ < 1, the “backbone” is downward sloping,
so the shift in the implied volatility curve is not purely horizontal. Instead, this curve shifts up and down
as the at-the-money point traverses the backbone. Our experience suggests that the parameters ½ and º
are very stable (¯ is assumed to be a given constant), and need to be re-…t only every few weeks. This
stability may be because the SABR model reproduces the usual dynamics of smiles and skews. In contrast,
the at-the-money volatility ¾ATM , or, equivalently, ® may need to be updated every few hours in fast-paced
markets.

Since the SABR model is a single self-consistent model for all strikes K, the risks calculated at one strike
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10Y into 5Y
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Fig. 3.11. Volatilities of 10 year into 5 year options

º 1Y 2Y 3Y 4Y 5Y 7Y 10Y
1M 76.2% 75.4% 74.6% 74.1% 75.2% 73.7% 74.1%
3M 65.1% 62.0% 60.7% 60.1% 62.9% 59.7% 59.5%
6M 57.1% 52.6% 51.4% 50.8% 49.4% 50.4% 50.0%
1Y 59.8% 49.3% 47.1% 46.7% 46.0% 45.6% 44.7%
3Y 42.1% 39.1% 38.4% 38.4% 36.9% 38.0% 37.6%
5Y 33.4% 33.2% 33.1% 32.6% 31.3% 32.3% 32.2%
7Y 30.2% 29.2% 29.0% 28.2% 26.2% 27.2% 27.0%
10Y 26.7% 26.3% 26.0% 25.6% 24.8% 24.7% 24.5%

Table 3.1
Volatility of volatility º for European swaptions. Rows are time-to-exercise; columns are tenor of the underlying swap.

are consistent with the risks calculated at other strikes. Therefore the risks of all the options on the same
asset can be added together, and only the residual risk needs to be hedged.

Let us set aside the ¢ risk for the moment, and calculate the other risks. Let BS(f;K; ¾B ; tex) be
Black’s formula 2.4a - 2.4c for, say, a call option. According to the SABR model, the value of a call is

(3.5) Vcall = BS(f;K; ¾B(K; f ); tex)

where the volatility ¾B(K; f ) ´ ¾B(K;f ;®; ¯; ½; º) is given by equations 2.17a - 2.17c. Di¤erentiating1 with
respect to ® yields the vega risk, the risk to overall changes in volatility:

(3.6)
@Vcall
@®

=
@BS

@¾B
¢ @¾B(K; f ;®; ¯; ½; º)

@®
:

This risk is the change in value when ® changes by a unit amount. It is traditional to scale vega so that
it represents the change in value when the ATM volatility changes by a unit amount. Since ±¾ATM =

1 In practice risks are calculated by …nite di¤erences: valuing the option at ®, re-valuing the option after bumping the
forward to ®+ ±, and then subtracting to determine the risk This saves di¤erentiating complex formulas such as 2.17a - 2.17c.

17



½ 1Y 2Y 3Y 4Y 5Y 7Y 10Y
1M 4.2% -0.2% -0.7% -1.0% -2.5% -1.8% -2.3%
3M 2.5% -4.9% -5.9% -6.5% -6.9% -7.6% -8.5%
6M 5.0% -3.6% -4.9% -5.6% -7.1% -7.0% -8.0%
1Y -4.4% -8.1% -8.8% -9.3% -9.8% -10.2% -10.9%
3Y -7.3% -14.3% -17.1% -17.1% -16.6% -17.9% -18.9%
5Y -11.1% -17.3% -18.5% -18.8% -19.0% -20.0% -21.6%
7Y -13.7% -22.0% -23.6% -24.0% -25.0% -26.1% -28.7%
10Y -14.8% -25.5% -27.7% -29.2% -31.7% -32.3% -33.7%

Table 3.2
Matrix of correlations ½ between the underlying and the volatility for European swaptons.

(@¾ATM =@®)±®, the vega risk is

(3.7a) vega ´ @Vcall
@®

=
@BS

@¾B
¢
@¾B(K; f ;®; ¯ ;½; º )

@®
@¾ATM(f ;®; ¯; ½; º)

@®

where ¾ATM (f ) = ¾B(f; f ) is given by 2.18. Note that to leading order, @¾B=@® ¼ ¾B =® and @¾ATM =@® ¼
¾ATM =®, so the vega risk is roughly given by

(3.7b) vega ¼ @BS

@¾B
¢ ¾B(K; f )
¾ATM (f )

=
@BS

@¾B
¢ ¾B(K; f )
¾B(f; f )

:

Qualitatively, then, vega risks at di¤erent strikes are calculated by bumping the implied volatility at each
strike K by an amount that is proportional to the implied volatiity ¾B (K; f ) at that strike. That is, in
using equation 3.7a, we are essentially using proportional, and not parallel, shifts of the volatility curve to
calculate the total vega risk of a book of options.

Since ½ and º are determined by …tting the implied volatility curve observed in the marketplace, the
SABR model has risks to ½ and º changing. Borrowing terminology from foreign exchange desks, vanna is
the risk to ½ changing and volga (vol gamma) is the risk to º changing:

(3.8a) vanna =
@Vcall
@½

=
@BS

@¾B
¢ @¾B(K;f ;®; ¯; ½; º)

@½
;

(3.8b) volga =
@Vcall

@º
=
@BS

@¾B
¢ @¾B(K; f ;®; ¯; ½; º)

@º
:

Vanna basically expresses the risk to the skew increasing, and volga expresses the risk to the smile becoming
more pronounced. These risks are easily calculated by using …nite di¤erences on the formula for ¾B in
equations 2.17a - 2.17c. If desired, these risks can be hedged by buying or selling away-from-the-money
options.

The delta risk expressed by the SABR model depends on whether one uses the parameterization ®,
¯, ½, º or ¾ATM , ¯, ½, º . Suppose …rst we use the parameterization ®, ¯, ½, º, so that ¾B(K; f ) ´
¾B(K; f ;®; ¯; ½; º). Di¤erentiating respect to f yields the ¢ risk

(3.9) ¢ ´ @Vcall

@f
=
@BS

@f
+
@BS

@¾B

@¾B(K;f ;®; ¯; ½; º)

@f
:
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The …rst term is the ordinary ¢ risk one would calculate from Black’s model. The second term is the SABR
model’s correction to the ¢ risk. It consists of the Black vega times the predicted change in the implied
volatility ¾B caused by the change in the forward f . As discussed above, the predicted change consists of
a sideways movement of the volatility curve in the same direction (and by the same amount) as the change
in the forward price f . In addition, if ¯ < 1 the volatility curve rises and falls as the at-the-money point
traverses up and down the backbone. There may also be minor changes to the shape of the skew/smile due
to changes in f .

Now suppose we use the parameterization ¾AMT , ¯, ½, º. Then ® is a function of ¾ATM and f de…ned
implicitly by 2.18. Di¤erentiating 3.5 now yields the ¢ risk

(3.10) ¢ ´ @BS

@f
+
@BS

@¾B

½
@¾B(K; f ;®;¯ ; ½; º )

@f
+
@¾B(K; f ;®; ¯; ½; º )

@®

@®(¾ATM ; f )

@f

¾
:

The delta risk is now the risk to changes in f with ¾ATM held …xed. The last term is just the change in
® needed to keep ¾ATM constant while f changes. Clearly this last term must just cancel out the vertical
component of the backbone, leaving only the sideways movement of the implied volatilty curve. Note that
this term is zero for ¯ = 1.

Theoretically one should use the ¢ from equation 3.9 to risk manage option books. In many markets,
however, it may take several days for volatilities ¾B to change following signi…cant changes in the forward
price f. In these markets, using ¢ from 3.10 is a much more e¤ective hedge. For suppose one used ¢ from
equation 3.9. Then, when the volatility ¾ATM did not immediately change following a change in f , one
would be forced to re-mark ® to compensate, and this re-marking would change the ¢ hedges. As ¾ATM
equilibrated over the next few days, one would mark ® back to its original value, which would change the ¢
hedges back to their original value. This “hedging chatter” caused by market delays can prove to be costly.

4. The dynamic SABR model. Quote results for smile and skew.
For each exercise date, same smile as in the static SABR model! Same smile dynamics!
Calibrating volatility surface is no harder than calibrating smile.
Show some results. FX options?

5. Conclusions. Other models. Give results for other models
SABR and dynamic SABR have the advantage of being the simplest models which can be used to

risk-manage smiles/skews.

Appendix A. Martingale pricing.
Quote martingale theory. Derive the martingale pricing formulas for general options and for swaptions.

Appendix B. Analysis of the SABR model.
Here we use singular perturbation techniques to price European options under the SABR model. Our

analysis is based on a small volatility expansion, where we take both the volatility ®̂ and the “volvol” º to be
small. To carry out this analysis in a systematic fashion, we re-write ®̂ ¡! "®̂; and º ¡! "º, and analyze

dF̂ = "®̂C(F̂ )dW1;(B.1a)

d®̂ = "º®̂dW2;(B.1b)

with

(B.1c) dW1dW2 = ½dt;

in the limit " ¿ 1. This is the distinguished limit [21], [22] in the language of singular perturbation theory.
After obtaining the results we replace "®̂ ¡! ®̂; and "º ¡! º to get the answer in terms of the original
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variables. We …rst analyze the model with a general C (F̂ ), and then specialize the results to the power law
F̂¯ . This is notationally simpler than working with the power law throughout, and the more general result
may prove valuable in some future application.

We …rst use the forward Kolmogorov equation to simplify the option pricing problem. Suppose the
economy is in state F̂ (t) = f; ®̂(t) = ® at date t. De…ne the probability density p(t; f; ®; T; F; A) by

(B.2) p(t;f ; ®; T; F; A)dFdA = prob
n
F < F̂ (T ) < F + dF; A < ®̂(T ) < A + dA

¯̄̄
F̂ (t) = f; ®̂(t) = ®

o
:

As a function of the forward variables T; F; A; the density p satis…es the forward Kolmogorov equation (the
F½okker-Planck equation)

(B.3a) pT =
1
2
"2A2[C 2(F )p]FF + "

2½º[A2C(F )p]F A +
1
2
"2º 2[A2p]AA for T > t;

with

(B.3b) p = ±(F ¡ f )±(A ¡ ®) at T = t;

as is well-known [24], [25], [26]. Here, and throughout, we use subscripts to denote partial derivatives.
Let V (t; f; ®) be the value of a European call option at date t, when the economy is in state F̂ (t) =

f; ®̂(t) = ®. Let tex be the option’s exercise date, and let K be its strike. Omitting the discount factor
D(tset), which factors out exactly, the value of the option is

V (t;f ; ®) = E
n
[F̂ (tex)¡ K]+ j F̂ (t) = f; ®̂(t) = ®

o
(B.4)

=

Z 1

¡1

Z 1

K

(F ¡K )p(t; f ;®; tex; F; A)dF dA:

See 2.1a. Since

(B.5) p(t; f ;®; tex; F; A) = ±(F ¡ f )±(A ¡ ®) +
Z tex

t

pT (t;f ; ®; T; F; A)dT;

we can re-write V (t; f; ®) as

(B.6) V (t;f ; ®) = [f ¡K]+ +
Z tex

t

Z 1

K

Z 1

¡1
(F ¡K)pT (t; f; ®; T; F; A)dAdF dT:

We substitute B.3a for pT into B.6. Integrating the A derivatives "2½º [A2C (F )p]FA and 1
2
"2º2[A2p]AA over

all A yields zero. Therefore our option price reduces to

(B.7) V (t; f; ®) = [f ¡ K]+ + 1
2
"2
Z tex

t

Z 1

¡1

Z 1

K

A2 (F ¡ K) [C 2(F )p]FF dFdAdT;

where we have switched the order of integration. Integrating by parts twice with respect to F now yields

(B.8) V (t; f; ®) = [f ¡K]+ + 1
2 "
2C2(K )

Z tex

t

Z 1

¡1
A2p(t; f; ®; T;K; A)dAdT:

The problem can be simpli…ed further by de…ning

(B.9) P (t; f; ®; T;K) =

Z 1

¡1
A2p(t; f; ®; T;K; A)dA:
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Then P satis…es the backward’s Kolmogorov equation [24], [25], [26]

Pt +
1
2
"2®2C 2(f )Pf f + "

2½º®2C(f )Pf® +
1
2
"2º2®2P®® = 0; for t < T(B.10a)

P = ®2±(f ¡K ); for t = T:(B.10b)

Since t does not appear explicitly in this equation, P depends only on the combination T ¡ t, and not on t
and T separately. So de…ne

(B.11) ¿ = T ¡ t; ¿ex = tex ¡ t:

Then our pricing formula becomes

(B.12) V (t; f ;®) = [f ¡ K]+ + 1
2
"2C 2(K)

Z ¿ex

0

P (¿; f; ®;K )d¿

where P (¿; f; ®;K) is the solution of the problem

P¿ =
1
2
"2®2C2(f )Pff + "

2½º®2C (f )Pf ® +
1
2
"2º2®2P®® ; for ¿ > 0;(B.13a)

P = ®2±(f ¡K); for ¿ = 0:(B.13b)

In this appendix we solve B.13a, B.13b to obtain P (¿; f ;®;K), and then substitute this solution into B.12
to obtain the option value V (t; f; ®). This yields the option price under the SABR model, but the resulting
formulas are awkward and not very useful. To cast the results in a more usable form, we re-compute the
option price under the normal model

(B.14a) dF̂ = ¾NdW;

and then equate the two prices to determine which normal volatility ¾N needs to be used to reproduce the
option’s price under the SABR model. That is, we …nd the “implied normal volatility” of the option under
the SABR model. By doing a second comparison between option prices under the log normal model

(B.14b) dF̂ = ¾BF̂ dW

and the normal model, we then convert the implied normal volatility to the usual implied log-normal (Black-
Scholes) volatility. That is, we quote the option price predicted by the SABR model in terms of the option’s
implied volatility.

B.1. Singular perturbation expansion. Using a straightforward perturbation expansion would yield
a Gaussian density to leading order,

(B.15a) P =
®p

2¼"2C2(K)¿
e
¡ (f¡K)2
2"2®2C2 (K)¿ f1 + ¢ ¢ ¢ g:

Since the “+ ¢ ¢ ¢ ” involves powers of (f ¡K )="®C (K), this expansion would become inaccurate as soon as
(f ¡K )C0(K)=C (K) becomes a signi…cant fraction of 1; i.e., as soon as C(f ) and C (K) are signi…cantly
di¤erent. Stated di¤erently, small changes in the exponent cause much greater changes in the probability
density. A better approach is to re-cast the series as

(B.15b) P =
®p

2¼"2C2(K)¿
e
¡ (f¡K)2
2"2®2C2 (K)¿ f1+¢¢¢ g
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and expand the exponent, since one expects that only small changes to the exponent will be needed to
e¤ect the much larger changes in the density. This expansion also describes the basic physics better — P is
essentially a Gaussian probability density which tails o¤ faster or slower depending on whether the “di¤usion
coe¢cient” C(f ) decreases or increases.

We can re…ne this approach by noting that the exponent is the integral

(B.16)
(f ¡K)2

2"2®2C2(K)¿
f1 + ¢ ¢ ¢ g = 1

2¿

Ã
1

"®

Z f

K

df 0

C(f 0)

!2

f1 + ¢ ¢ ¢ g:

Suppose we de…ne the new variable

(B.17) z =
1

"®

Z f

K

df 0

C (f 0)
:

so that the solution P is essentially e¡z
2=2. To leading order, the density is Gaussian in the variable z, which

is determined by how “easy” or “hard” it is to di¤use from K to f , which closely matches the underlying
physics. The fact that the Gaussian changes by orders of magnitude as z2 increases should be largely
irrelevent to the quality of the expansion. This approach is directly related to the geometric optics technique
that is so successful in wave propagation and quantum electronics [27], [22]. To be more speci…c, we shall
use the near identity transform method to carry out the geometric optics expansion. This method, pioneered
in [28], transforms the problem order-by-order into a simple canonical problem, which can then be solved
trivially. Here we obtain the solution only through O("2), truncating all higher order terms.

Let us change variables from f to

(B.18a) z =
1

"®

Z f

K

df 0

C (f 0)
;

and to avoid confusion, we de…ne

(B.18b) B("®z) = C(f):

Then

(B.19a)
@

@f
¡! 1

"®C (f )

@

@z
=

1

"®B("®z)

@

@z
;

@

@®
¡! @

@®
¡ z

®

@

@z
;

and

@2

@f 2
¡! 1

"2®2B2("®z)

½
@2

@z2
¡ "® B

0("®z)
B("®z)

@

@z

¾
;(B.19b)

@2

@f@®
¡! 1

"®B("®z)

½
@2

@z@®
¡ z

®

@2

@z2
¡ 1

®

@

@z

¾
;(B.19c)

@2

@®2
¡! @2

@®2
¡ 2z

®

@2

@z@®
+
z2

®2
@2

@z2
+
2z

®2
@

@z
:(B.19d)

Also,

(B.19e) ±(f ¡ K) = ±("®zC(K)) = 1

"®C (K)
±(z):
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Therefore, B.12 through B.13b become

(B.20) V (t; f; a) = [f ¡K ]+ + 1
2
"2C2(K)

Z ¿ex

0

P (¿ ; z; ®)d¿;

where P (¿; z; ®) is the solution of

P¿ =
1
2

¡
1 ¡ 2"½ºz + "2º2z2¢Pzz ¡ 1

2
"a
B0

B
Pz + ("½º ¡ "2º2z)(®Pz® ¡ Pz)(B.21a)

+ 1
2
"2º2®2P®a for ¿ > 0

(B.21b) P =
®

"C(K )
±(z) at ¿ = 0:

Accordingly, let us de…ne P̂ (¿; z;®) by

(B.22) P̂ =
"

®
C (K)P:

In terms of P̂ , we obtain

(B.23) V (t; f; a) = [f ¡K]+ + 1
2 "®C (K)

Z ¿ex

0

P̂ (¿; z;®)d¿ ;

where P̂ (¿; z; ®) is the solution of

P̂¿ =
1
2

¡
1¡ 2"½ºz+ "2º2z2¢ P̂zz ¡ 1

2
"a
B0

B
P̂z + ("½º ¡ "2º2z)®P̂z®(B.24a)

+ 1
2
"2º 2(®2P̂®® + 2®P̂®) for ¿ > 0;

(B.24b) P̂ = ±(z) at ¿ = 0:

To leading order P̂ is the solution of the standard di¤usion problem P̂¿ =
1
2 P̂zz with P̂ = ±(z) at ¿ = 0.

So it is a Gaussian to leading order. The next stage is to transform the problem to the standard di¤usion
problem through O("), and then through O("2), . . . . This is the near identify transform method which has
proven so powerful in near-Hamiltonian systems [28].

Note that the variable ® does not enter the problem for P̂ until O("), so

(B.25) P̂ (¿; z; ®) = P̂0(¿; z) + P̂1(¿; z; ®) + ¢ ¢ ¢
Consequently, the derivatives P̂z® , P̂®® , and P̂® are all O("). Recall that we are only solving for P̂ through
O("2). So, through this order, we can re-write our problem as

P̂¿ =
1
2

¡
1 ¡ 2"½ºz + "2º 2z2¢ P̂zz ¡ 1

2
"a
B 0

B
P̂z + "½º®P̂z® for ¿ > 0(B.26a)

P̂ = ±(z) at ¿ = 0:(B.26b)

Let us now eliminate the 1
2
"a(B 0=B)P̂z term. De…ne H(¿ ;z; ®) by

(B.27) P̂ =
p
C(f)=C (K)H ´

p
B("®z)=B(0)H:
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Then

P̂z =
p
B("®z)=B(0)

½
Hz +

1
2 "®

B 0

B
H

¾
;(B.28a)

P̂zz =
p
B("®z)=B(0)

½
Hzz + "®

B 0

B
Hz + "

2®2
·
B 00

2B
¡ B02

4B2

¸
H

¾
;(B.28b)

P̂z® =
p
B("®z)=B(0)

½
Hz® +

1
2 "z

B 0

B
Hz +

1
2 "®

B 0

B
H® +

1
2 "
B0

B
H +O("2)

¾
:(B.28c)

The option price now becomes

(B.29) V (t; f; a) = [f ¡K]+ + 1
2
"®
p
B(0)B("®z)

Z ¿ex

0

H (¿; z; ®) d¿ ;

where

H¿ =
1
2

¡
1 ¡ 2"½ºz + "2º 2z2¢Hzz¡ 1

2
"2½º®

B0

B
(zHz ¡H)(B.30a)

+"2®2
µ
1
4

B 00

B
¡ 3

8

B02

B2

¶
H+"½º®(Hz® +

1
2"®

B 0

B
H®) for ¿ > 0

(B.30b) H = ±(z) at ¿ = 0:

Equations B.30a, B.30b are independent of ® to leading order, and at O(") they depend on ® only through
the last term "½º®(Hz® +

1
2 "®

B 0
B H®). As above, since B.30a is independent of ® to leading order, we can

conclude that the ® derivatives H® and Hz® are no larger than O("), and so the last term is actually no
larger than O("2). Therefore H is independent of ® until O("2) and the ® derivatives are actually no larger
than O("2). Thus, the last term is actually only O("3), and can be neglected since we are only working
through O("2). So,

(B.31a) H¿ =
1
2

¡
1 ¡ 2"½ºz + "2º 2z2¢Hzz ¡ 1

2
"2½º®

B 0

B
(zHz ¡H) + "2®2

µ
1
4

B 00

B
¡ 3

8

B 02

B2

¶
H for ¿ > 0

(B.31b) H = ±(z) at ¿ = 0:

There are no longer any ® derivatives, so we can now treat ® as a parameter instead of as an independent
variable. That is, we have succeeded in e¤ectively reducing the problem to one dimension.

Let us now remove the Hz term through O("2). To leading order, B 0("®z)=B("®z) and B 00("®z)=B("®z)
are constant. We can replace these ratios by

(B.32) b1 = B
0("®z0)=B("®z0); b2 = B

00("®z0)=B("®z0);

commiting only an O(") error, where the constant z0 will be chosen later. We now de…ne Ĥ by

(B.33) H = e"
2½º®b1z

2=4Ĥ:

Then our option price becomes

(B.34) V (t; f; a) = [f ¡K]+ + 1
2
"®
p
B(0)B("®z)e"

2½º®b1z
2=4

Z ¿ex

0

Ĥ(¿ ; z) d¿;
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where Ĥ is the solution of

(B.35a) Ĥ¿ =
1
2

¡
1¡ 2"½ºz+ "2º2z2¢ Ĥzz + "

2®2
¡
1
4
b2 ¡ 3

8
b21
¢
Ĥ + 3

4
"2½º®b1Ĥ for ¿ > 0

(B.35b) Ĥ = ±(z) at ¿ = 0:

We’ve almost beaten the equation into shape. We now de…ne

(B.36a) x =
1

"º

Z "ºz

0

d³p
1 ¡ 2½³ + ³2

=
1

"º
log (

p
1 ¡ 2"½ºz + "2º 2z2 ¡ ½+ "ºz

1 ¡ ½ );

which can be written implicitly as

(B.36b) "ºz = sinh"ºx¡ ½(cosh "ºx¡ 1):
In terms of x, our problem is

(B.37) V (t; f; a) = [f ¡K ]+ + 1
2
"®
p
B(0)B("®z)e"

2½º®b1z
2=4

Z ¿ex

0

Ĥ(¿; x)d¿;

with

(B.38a) Ĥ¿ =
1
2 Ĥxx ¡ 1

2"ºI
0("ºz)Ĥx + "

2®2
¡
1
4 b2 ¡ 3

8 b
2
1

¢
Ĥ + 3

4 "
2½º®b1Ĥ for ¿ > 0

(B.38b) Ĥ = ±(x) at ¿ = 0:

Here

(B.39) I(³) =

q
1¡ 2½³ + ³2:

The …nal step is to de…ne Q by

(B.40) Ĥ = I1=2("ºz(x))Q =
¡
1 ¡ 2"½ºz + "2º 2z2¢1=4Q:

Then

Ĥx = I
1=2("ºz)

£
Qx +

1
2
"ºI 0("ºz)Q

¤
;(B.41a)

Ĥxx = I
1=2("ºz)

£
Qxx + "ºI

0Qx + "
2º2

¡
1
2 I

00I + 1
4 I

0I 0
¢
Q
¤
;(B.41b)

and so

(B.42) V (t; f; a) = [f ¡ K]+ + 1
2
"®
p
B(0)B("®z)I1=2("ºz)e

1
4 "

2½º®b1z
2

Z ¿ex

0

Q(¿; x)d¿;

where Q is the solution of

(B.43a) Q¿ =
1
2Qxx + "

2º2
¡
1
4 I

00I ¡ 1
8 I

0I0
¢
Q + "2®2

¡
1
4 b2 ¡ 3

8 b
2
1

¢
Q+ 3

4 "
2½º®b1Q

for ¿ > 0, with

(B.43b) Q = ±(x) at ¿ = 0:
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As above, we can replace I("ºz); I 0("ºz); I 00("ºz) by the constants I("ºz0); I 0("ºz0); I 00("ºz0), and com-
mit only O(") errors. De…ne the constant · by

(B.44) · = º2
³
1
4
I 00("ºz0)I("ºz0)¡ 1

8
[I 0("ºz0]

2
)
´
+ ®2

¡
1
4
b2 ¡ 3

8
b21
¢
+ 3

4
½º®b1;

where z0 will be chosen later. Then through O("2), we can simplify our equation to

Q¿ =
1
2
Qxx + "

2·Q for ¿ > 0;(B.45a)

Q = ±(x) at ¿ = 0:(B.45b)

The solution of B.45a, B.45b is clearly

(B.46) Q =
1p
2¼¿

e¡x
2=2¿e"

2·¿ =
1p
2¼¿

e¡x
2=2¿ 1¡

1 ¡ 2
3·"

2¿ + ¢ ¢ ¢ ¢3=2
through O("2).

This solution yields the option price

(B.47) V (t; f; a) = [f ¡K ]+ + 1
2
"®
p
B(0)B("®z)I1=2("ºz)e

1
4"

2½º®b1z
2

Z ¿ex

0

1p
2¼¿

e¡x
2=2¿e"

2·¿ d¿:

Observe that this can be written as

(B.48a) V (t; f; a) = [f ¡K]+ + 1
2

f ¡K
x

Z ¿ex

0

1p
2¼¿

e¡x
2=2¿ e"

2µe"
2·¿ d¿ ;

where

(B.48b) "2µ = log

µ
"®z

f ¡K
p
B(0)B("®z)

¶
+ log

µ
xI1=2("ºz)

z

¶
+ 1

4
"2½º®b1z

2

Moreover, quite amazingly,

(B.48c) e"
2·¿ =

1¡
1 ¡ 2

3
·"2¿

¢3=2 = 1µ
1 ¡ 2"2¿ µ

x2

¶3=2 +O("4);
through O("2). This can be shown by expanding "2µ through O("2), and noting that "2µ=x2matches ·=3.
Therefore our option price is

(B.49) V (t; f; a) = [f ¡K]+ + 1
2

f ¡K
x

Z ¿ex

0

1p
2¼¿

e¡x
2=2¿e"

2µ d¿µ
1 ¡ 2¿

x2
"2µ

¶3=2 ;
and changing integration variables to

(B.50) q =
x2

2¿
;

reduces this to

(B.51) V (t; f; a) = [f ¡ K]+ + jf ¡Kj
4
p
¼

Z 1

x2

2¿ex

e¡q+"
2µ

(q ¡ "2µ)3=2
dq:
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That is, the value of a European call option is given by

(B.52a) V (t; f; a) = [f ¡ K]+ + jf ¡Kj
4
p
¼

Z 1

x2

2¿ex
¡ "2µ

e¡q

q3=2
dq;

with

(B.52b) "2µ = log

µ
"®z

f ¡K
p
B(0)B("®z)

¶
+ log

µ
xI1=2("ºz)

z

¶
+ 1

4 "
2½º®b1z

2;

through O("2).

B.2. Equivalent normal volatility. Equations B.52a and B.52a are a formula for the dollar price
of the call option under the SABR model. The utility and beauty of this formula is not overwhelmingly
apparent. To obtain a useful formula, we convert this dollar price into the equivalent implied volatilities.
We …rst obtain the implied normal volatility, and then the standard log normal (Black) volatility.

Suppose we repeated the above analysis for the ordinary normal model

(B.53a) dF̂ = ¾NdW; F̂ (0) = f :

where the normal volatily ¾N is constant, not stochastic. (This model is also called the absolute or Gaussian
model). We would …nd that the option value for the normal model is exactly

(B.53b) V (t;f ) = [f ¡K]+ + jf ¡ Kj
4
p
¼

Z 1

(f¡K)2
2¾2N ¿ex

e¡q

q3=2
dq

This can be seen by setting C(f) to 1, setting "® to ¾N and setting º to 0 in B.52a, B.52b. Working out
this integral then yields the exact European option price

(B.54a) V (t; f ) = (f ¡K)N ( f ¡K
¾N
p
¿ ex

) + ¾N
p
¿ exG( f ¡K

¾N
p
¿ ex

);

for the normal model, where N is the normal distribution and G is the Gaussian density

(B.54b) G(q) = 1p
2¼
e¡q

2=2:

From B.53b it is clear that the option price under the normal model matches the option price under the
SABR model B.52a, B.52a if and only if we choose the normal volatility ¾N to be

(B.55)
1

¾2N
=

x2

(f ¡ K)2
½
1¡ 2"2 µ

x2
¿ ex

¾
:

Taking the square root now shows the option’s implied normal (absolute) volatility is given by

(B.56) ¾N =
f ¡K
x

½
1 + "2

µ

x2
¿ ex + ¢ ¢ ¢

¾
through O("2).

Before continuing to the implied log normal volatility, let us seek the simplest possible way to re-write
this answer which is correct through O("2). Since x = z[1 + O(")], we can re-write the answer as

(B.57a) ¾N =

µ
f ¡K
z

¶µ
z

x(z)

¶©
1 + "2 (Á1 + Á2 + Á3) ¿ex + ¢ ¢ ¢

ª
;
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where

f ¡K
z

=
"®(f ¡K)R f
K

df 0

C (f 0)

=

Ã
1

f ¡K
Z f

K

df 0

"®C(f 0)

!¡1

:

This factor represents the average di¢culty in di¤using from today’s forward f to the strike K, and would
be present even if the volatility were not stochastic.

The next factor is

(B.57b)
z

x(z)
=

³

log

Ãp
1 ¡ 2½³ + ³2 ¡ ½+ ³

1¡ ½

! ;
where

(B.57c) ³ = "ºz =
º

®

Z f

K

df 0

C(f 0)
=
º

®

f ¡K
C(fav )

©
1 +O("2)

ª
:

Here fav =
p
fK is the geometric average of f and K . (The arithmetic average could have been used equally

well at this order of accuracy). This factor represents the main e¤ect of the stochastic volatility.
The coe¢cients Á1, Á2, and Á3 provide relatively minor corrections. Through O("

2) these corrections
are

"2Á1 =
1

z2
log

µ
"®z

f ¡ K
p
C(f )C (K)

¶
=
2°2 ¡ °21
24

"2®2C2 (fav) + ¢ ¢ ¢(B.57d)

"2Á2 =
1

z2
log
³ x
z

£
1 ¡ 2"½ºz + "2º2z2¤1=4´ = 2 ¡ 3½2

24
"2º 2 + ¢ ¢ ¢(B.57e)

"2Á3 =
1
4
"2½®º

B0("ºz0)
B("ºz0)

= 1
4
"2½º®°1C (fav ) + ¢ ¢ ¢(B.57f)

where

(B.57g) °1 =
C0(fav )
C(fav )

; °2 =
C00(fav )
C (fav)

:

Let us brie‡y summarize before continuing. Under the normal model, the value of a European call option
with strike K and exercise date ¿ex is given by B.54a, B.54b. For the SABR model,

dF̂ = "®̂C(F̂ )dW1; F̂ (0) = f(B.58a)

d®̂ = "º ®̂dW2; ®̂(0) = ®(B.58b)

(B.58c) dW1dW2 = ½dt;

the value of the call option is given by the same formula, at least through O("2), provided we use the implied
normal volatility

¾N (K) =
"®(f ¡K)R f
K

df 0

C(f 0)

¢
µ

³

x̂(³)

¶
¢(B.59a)

½
1 +

·
2°2 ¡ °21
24

®2C 2 (fav) +
1
4½º®°1C (fav ) +

2¡ 3½2
24

º 2
¸
"2¿ ex + ¢ ¢ ¢

¾
:
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Here

(B.59b) fav =
p
fK; °1 =

C0(fav )
C(fav)

; °2 =
C00(fav)
C (fav)

;

(B.59c) ³ =
º

®

f ¡K
C (fav )

; x̂(³) = log

Ãp
1 ¡ 2½³ + ³2 ¡ ½ + ³

1¡ ½

!
:

The …rst two factors provide the dominant behavior, with the remaining factor 1+[¢ ¢ ¢ ]"2¿ex usually provide-
ing corrections of around 1% or so.

One can repeat the analysis for a European put option, or simply use call/put parity. This shows that
the value of the put option under the SABR model is

(B.60) Vput(f; ®;K) = (K ¡ f )N( K ¡ f
¾N
p
¿ ex

) + ¾N
p
¿exG( K ¡ f

¾N
p
¿ ex

)

where the implied normal volatility ¾N is given by the same formulas B.59a - B.59c as the call.
We can revert to the original units by replacing "® ¡! ®, "º ¡! º everywhere in the above formulas;

this is equivalent to setting " to 1 everywhere.

B.3. Equivalent Black vol. With the exception of JPY traders, most traders prefer to quote prices in
terms of Black (log normal) volatilities, rather than normal volatilities. To derive the implied Black volatility,
consider Black’s model

(B.61) dF̂ = "¾BF̂ dW; F̂ (0) = f;

where we have written the volatility as "¾B to stay consistent with the preceding analysis. For Black’s
model, the value of a European call with strike K and exercise date ¿ex is

Vcall = fN (d1)¡ KN (d2);(B.62a)

Vput = Vcall +D(tset)[K ¡ f ];(B.62b)

with

(B.62c) d1;2 =
log f=K § 1

2
"2¾2B¿ ex

"¾B
p
¿ ex

;

where we are omitting the overall factor D(tset) as before.
We can obtain the implied normal volatility for Black’s model by repeating the preceding analysis for

the SABR model with C(f) = f and º = 0. Setting C (f ) = f and º = 0 in B.59a -B.59c shows that the
normal volatility is

(B.63) ¾N (K) =
"¾B(f ¡ K)
log f=K

©
1¡ 1

24
"2¾2B ¿ex + ¢ ¢ ¢

ª
:

through O("2). Indeed, in [14] it is shown that the implied normal volatility for Black’s model is

(B.64) ¾N (K) = "¾B
p
fK

1 + 1
24
log2 f=K + 1

1920
log4 f=K + ¢ ¢ ¢

1 + 1
24

¡
1 ¡ 1

120
log2 f=K

¢
"2¾2B¿ ex +

1
5760

"4¾4B¿
2
ex + ¢ ¢ ¢
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through O("4). We can …nd the implied Black vol for the SABR model by setting ¾N obtained from Black’s
model in equation B.63 equal to ¾N obtained from the SABR model in B.59a - B.59c. Through O("2) this
yields

¾B(K ) =
® log f=KR f
K

df 0

C(f 0)

¢
µ

³

x̂(³)

¶
¢(B.65)

½
1 +

·
2°2 ¡ °21 + 1=f 2av

24
®2C 2 (fav ) +

1
4
½º®°1C (fav) +

2 ¡ 3½2
24

º 2
¸
"2¿ex + ¢ ¢ ¢

¾
This is the main result of this article. As before, the implied log normal volatility for puts is the same as for
calls, and this formula can be re-cast in terms of the original variables by simpley setting " to 1:

B.4. Stochastic ¯ model. As originally stated, the SABR model consists of the special case C (f ) =
f¯ :

dF̂ = "®̂F̂¯dW1; F̂ (0) = f(B.66a)

d®̂ = "º ®̂dW2; ®̂(0) = ®(B.66b)

(B.66c) dW1dW2 = ½dt:

Making this substitution in ?? - ?? shows that the implied normal volatility for this model is

¾N (K) =
"®(1¡ ¯ )(f ¡K)
f 1¡¯ ¡K1¡¯ ¢

µ
³

x̂(³)

¶
¢(B.67a) ½

1 +

·¡¯ (2¡ ¯)®2
24f

2¡2¯
av

+
½®º¯

4f
1¡¯
av

+
2¡ 3½2
24

º2
¸
"2¿ ex + ¢ ¢ ¢

¾
through O("2), where fav =

p
fK as before and

(B.67b) ³ =
º

®

f ¡K
f¯av

; x̂(³) = log

Ãp
1¡ 2½³ + ³2 ¡ ½ + ³

1 ¡ ½

!
:

We can simplify this formula by expanding

f ¡K =
p
fK log f=K

©
1 + 1

24
log2 f=K + 1

1920
log4 f=K + ¢ ¢ ¢ ;(B.68a)

f 1¡¯ ¡K1¡¯ = (1 ¡ ¯)(fK )(1¡¯)=2 log f=K
n
1 +

(1¡¯)2
24 log2 f=K +

(1¡¯)4
1920 log4 f=K + ¢ ¢ ¢(B.68b)

and neglecting terms higher than fourth order. This expansion reduces the implied normal volatility to

¾N (K) = "®(fK)
¯=2 1 + 1

24 log
2 f=K + 1

1920 log
4 f=K + ¢ ¢ ¢

1 + (1¡¯)2
24

log2 f=K + (1¡¯)4
1920

log4 f=K + ¢ ¢ ¢
¢
µ

³

x̂(³)

¶
¢(B.69a) ½

1 +

·¡¯(2 ¡ ¯)®2
24(fK)1¡¯

+
½®º¯

4(fK)(1¡¯)=2
+
2¡ 3½2
24

º2
¸
"2¿ex + ¢ ¢ ¢

¾
;

where

(B.69b) ³ =
º

®
(fK)(1¡¯)=2 log f=K; x̂(³) = log

Ãp
1¡ 2½³ + ³2 ¡ ½ + ³

1 ¡ ½

!
:
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This is the formula we use in pricing European calls and puts.
To obtain the implied Black volatility, we equate the implied normal volatility ¾N (K ) for the SABR

model obtained in B.69a - B.69b to the implied normal volatility for Black’s model obtained in B.63. This
shows that the implied Black volatility for the SABR model is

¾B(K ) =
"®

(fK)(1¡¯)=2
1

1 +
(1¡¯)2
24 log2 f=K +

(1¡¯)4
1920 log4 f=K + ¢ ¢ ¢

¢
µ

³

x̂(³)

¶
¢(B.69c) ½

1 +

·
(1 ¡ ¯)2®2
24(fK)1¡¯

+
½®º¯

4(fK)(1¡¯)=2
+
2¡ 3½2
24

º2
¸
"2¿ex + ¢ ¢ ¢

¾
;

through O("2), where ³ and x̂(³) are given by B.69b as before. Apart from setting " to 1 to recover the
original units, this is the formula quoted in section 2, and …tted to the market in section 3.

B.5. Special cases. Two special cases are worthy of special treatment: the stochastic normal model
(¯ = 0) and the stochastic log normal model (¯ = 1). Both these models are simple enough that the
expansion can be continued through O("4). For the stochastic normal model (¯ = 0) the implied volatilities
of European calls and puts are

(B.70a) ¾N (K) = "®

½
1 +

2¡ 3½2
24

"2º2¿ex + ¢ ¢ ¢
¾

(B.70b) ¾B(K ) = "®
log f=K

f ¡K ¢
µ

³

x̂(³)

¶
¢
½
1 +

·
®2

24fK
+
2 ¡ 3½2
24

º 2
¸
"2¿ex + ¢ ¢ ¢

¾
through O("4), where

(B.70c) ³ =
º

®

p
fK log f=K; x̂(³) = log

Ãp
1 ¡ 2½³ + ³2¡ ½ + ³

1 ¡ ½

!
:

For the stochastic log normal model (¯ = 1) the implied volatilities are

(B.71a) ¾N (K) = "®
f ¡K
log f=K

¢
µ

³

x̂(³)

¶
¢ ©1 + £¡ 1

24®
2+ 1

4½®º +
1
24 (2 ¡ 3½2)º2

¤
"2¿ex + ¢ ¢ ¢

ª

(B.71b) ¾B(K) = "® ¢
µ

³

x̂(³)

¶
¢ ©1 + £ 1

4
½®º + 1

24
(2 ¡ 3½2)º2¤ "2¿ex + ¢ ¢ ¢ ª

through O("4), where

(B.71c) ³ =
º

®
log f=K; x̂(³) = log

Ãp
1¡ 2½³ + ³2 ¡ ½ + ³

1 ¡ ½

!
:

Appendix C. Analysis of the dynamic SABR model.
We use e¤ective medium theory [23] to extend the preceding analysis to the dynamic SABR model. As

before, we take the volatility °(t)®̂ and “volvol” º(t) to be small, writng °(t) ¡! "°(t); and º (t)¡! "º(t),
and analyze

dF̂ = "°(t)®̂C(F̂ )dW1;(C.1a)

d®̂ = "º(t)®̂dW2;(C.1b)
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with

(C.1c) dW1dW2 = ½(t)dt;

in the limit " ¿ 1. We obtain the prices of European options, and from these prices we obtain the implied
volatity of these options. After obtaining the results, we replace "°(t) ¡! °(t) and "º(t) ¡! º (t) to get the
answer in terms of the original variables.

Suppose the economy is in state F̂ (t) = f; ®̂(t) = ® at date t. Let V (t; f ;®) be the value of, say, a Euro-
pean call option with strike K and exercise date tex . As before, de…ne the transition density p(t; f; ®; T; F; A)
by

(C.2a) p(t; f; ®; T; F; A)dFdA ´ prob
n
F < F̂ (T) < F + dF; A < ®̂(T ) < A + dA

¯̄̄
F̂ (t) = f ; ®̂(t) = ®

o
and de…ne

(C.2b) P (t; f; ®; T;K) =

Z 1

¡1
A2p(t; f; ®; T;K; A)dA:

Repeating the analysis in Appendix B through equation B.10a, B.10b now shows that the option price is
given by

(C.3) V (t; f; a) = [f ¡K ]+ + 1
2
"2C2(K)

Z tex

t

°2(T)P (t; f; ®; T;K) dT;

where P (t; f; ®; T;K) is the solution of the backwards problem

Pt +
1
2
"2
©
°2®2C 2(f )Pff + 2½°º®

2C(f)Pf® + º
2®2P®®

ª
= 0; for t < T(C.4a)

P = ®2±(f ¡ K); for t = T:(C.4b)

We eliminate °(t) by de…ning the new time variable

(C.5) s =

Z t

0

°2(t0)dt0; s 0 =
Z T

0

°2(t0)dt0; sex =

Z tex

0

°2(t0)dt0:

Then the option price becomes

(C.6) V (t; f; a) = [f ¡K]+ + 1
2
"2C2(K)

Z sex

s

P (s; f; ®; s0; K )ds0;

where P (s; f; ®; s0;K ) solves the forward problem

Ps +
1
2
"2
©
®2C 2(f )Pff + 2´(s)®

2C(f )Pf® + À
2(s)®2P®®

ª
= 0 for s < s0(C.7a)

P = ®2±(f ¡ K); for s = s0:(C.7b)

Here

(C.8) ´(s) = ½(t)º(t)=°(t); À(s) = º(t)=°(t):

We solve this problem by using an e¤ective media strategy [23]. In this strategy our objective is to
determine which constant values ¹́ and ¹À yield the same option price as the the time dependent coe¢cients
´(s) and À(s). If we could …nd these constant values, this would reduce the problem to the non-dynamic
SABR model solved in Appendix B.
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We carry out this strategy by applying the same series of time-independent transformations that was
used to solve the non-dynamic SABR model in Appendix B, de…ning the transformations in terms of the
(as yet unknown) constants ¹́ and ¹À. The resulting problem is relatively complex, more complex than the
canonical problem obtained in Appedix B. We use a regular perturbation expansion to solve this problem,
and once we have solved this problem, we choose ¹́ and ¹À so that all terms arising from the time dependence
of ´(t) and À(t) cancel out. As we shall see, this simultaneously determines the “e¤ective” parameters and
allows us to use the analysis in Appendix B to obtain the implied volatility of the option.

C.1. Transformation. As in Appendix B, we change independent variables to

(C.9a) z =
1

"®

Z f

K

df 0

C (f 0)
;

and de…ne

(C.9b) B("®z) = C(f):

We then change dependent variables from P to P̂ , and then to H :

(C.9c) P̂ =
"

®
C (K)P;

(C.9d) H =
p
C (K)=C(f )P̂ ´

p
B(0)=B("®z)P̂ :

Following the reasoning in Appendix B, we obtain

(C.10) V (t; f; a) = [f ¡ K]+ + 1
2 "®

p
B(0)B("®z)

Z sex

s

H(s; z; ®; s0)ds0;

where H (s; z;®; s0) is the solution of

(C.11a) Hs +
1
2

¡
1¡ 2"´z + "2À2z2¢Hzz ¡ 1

2
"2´®

B 0

B
(zHz ¡H) + "2®2

µ
1
4

B 00

B
¡ 3

8

B 02

B2

¶
H = 0

for s < s0, and

(C.11b) H = ±(z) at s = s0

through O("2). See B.29, B.31a, and B.31b. There are no ® derivatives in equations C.11a, C.11b, so we can
treat ® as a parameter instead of a variable. Through O("2) we can also treat B 0=B and B 00=B as constants:

(C.12) b1 ´ B 0("®z0)
B("®z0)

; b2 ´ B 00("®z0)
B("®z0)

;

where z0 will be chosen later. Thus we must solve

(C.13a) Hs +
1
2

¡
1 ¡ 2"´z + "2À2z2¢Hzz ¡ 1

2 "
2´®b1(zHz ¡H) + "2®2

¡
1
4 b2¡ 3

8 b
2
1

¢
H = 0 for s < s 0;

(C.13b) H = ±(z) at s = s0:
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At this point we would like to use a time-independent transformation to remove the zHz term from
equation C.13a. It is not possible to cancel this term exactly, since the coe¢cient ´(s) is time dependent.
Instead we use the transformation

(C.14) H = e
1
4"

2®b1±z
2

Ĥ ,

where the constant ± will be chosen later. This transformation yields

Ĥs +
1
2

¡
1¡ 2"´z+ "2À2z2¢ Ĥzz ¡ 1

2
"2®b1(´ ¡ ±)zĤz

+ 1
4 "
2®b1(2´ + ±)Ĥ + "2®2

¡
1
4b2 ¡ 3

8 b
2
1

¢
Ĥ = 0 for s < s0;

(C.15b) Ĥ = ±(z) at s = s0;

through O("2). Later the constant ± will be selected so that the change in the option price caused by the
term 1

2 "
2®b1´zĤz is exactly o¤set by the change in price due to 1

2 "
2®b1±zĤz term. In this way to the

transformation cancels out the zHz term “on average.”
In a similar vein we de…ne

(C.16a) I("¹Àz) =
p
1 ¡ 2"¹́z + "2¹À2z2;

and

(C.16b) x =
1

"¹À

Z "¹Àz

0

d³

I(³)
=
1

"¹À
log (

p
1¡ 2"¹́z+ "2¹À2z2 ¡ ¹́=¹À + "¹Àz

1 ¡ ¹́=¹À );

where the constants ¹́ and ¹À will be chosen later. This yields

(C.17a) Ĥs +
1
2

1¡ 2"´z + "2À2z2
1¡ 2"¹́z + "2¹À2z2 (Ĥxx ¡ "¹ÀI0("¹Àz)Ĥx)¡ 1

2
"2®b1(´ ¡ ±)xĤx

+ 1
4
"2®b1(2´ + ±)Ĥ + "2®2

¡
1
4
b2 ¡ 3

8
b21
¢
Ĥ = 0 for s < s0;

(C.17b) Ĥ = ±(x) at s = s0;

through O("2). Here we used z = x + ¢ ¢ ¢ and zĤz = xĤx + ¢ ¢ ¢ to leading order to simplify the results.
Finally, we de…ne

(C.18) Ĥ = I1=2("¹Àz)Q:

Then the price of our call option is

(C.19) V (t; f; a) = [f ¡K ]+ + 1
2
"®
p
B(0)B("®z)I1=2("¹Àz)e

1
4 "

2®b1±z
2

Z sex

s

Q(s; x; s0)ds 0;

where Q(s; x; s0) is the solution of

(C.20a) Qs +
1
2

1¡ 2"´z + "2À2z2
1¡ 2"¹́z + "2¹À2z2Qxx ¡ 1

2
"2®b1(´ ¡ ±)xQx +

1
4
"2®b1(2´ + ±)Q
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+"2¹À2
¡
1
4 I

00I ¡ 1
8 I
0I 0
¢
Q+ "2®2

¡
1
4 b2 ¡ 3

8 b
2
1

¢
Q = 0 for s < s0;

(C.20b) Q = ±(x) at s = s0;

Using

(C.21) z = x¡ 1
2
"¹́x2 + ¢ ¢ ¢ ;

we can simplify this to

(C.22a) Qs +
1
2
Qxx = "(´ ¡ ¹́)xQxx ¡ 1

2
"2
£
À2 ¡ ¹À2¡ 3¹́(´ ¡ ¹́)¤ x2Qxx +

1
2
"2®b1(´ ¡ ±)(xQx ¡Q)

¡ 3
4
"2®b1±Q ¡ "2¹À2

¡
1
4
I0 0I ¡ 1

8
I 0I 0

¢
Q ¡ "2®2 ¡ 1

4
b2 ¡ 3

8
b21
¢
Q for s < s0;

(C.22b) Q = ±(x) at s = s0;

through O("2). Note that I; I 0; and I 00 can be replaced by the constants I("¹Àz0); I0("¹Àz0), and I 00("¹Àz0)
through O("2).

C.2. Perturbation expansion. Suppose we were to expand Q(s; x; s0) as a power series in " :

(C.23) Q(s; x; s0) = Q(0)(s; x; s0) + "Q(1)(s; x; s 0) + "2Q(2)(s; x;s 0) + ¢ ¢ ¢ :

Substituting this expansion into C.22a, C.22b yields the following hierarchy of equations. To leading order
we have

Q(0)s + 1
2Q

(0)
xx = 0 for s < s0;(C.24a)

Q(0) = ±(x) at s = s0:(C.24b)

At O(") we have

(C.25a) Q(1)
s + 1

2Q
(1)
xx = (´ ¡ ¹́)xQ(0)xx for s < s0;

(C.25b) Q(1) = 0 at s = s0:

At O("2) we can break the solution into

(C.26) Q(2) = Q(2s) +Q(2a) +Q(2b);

where

(C.27a) Q(2s)s + 1
2
Q(2s)
xx = ¡ 3

4
ab1±Q

(0)¡ ¹À2 ¡1
4
I 00I ¡ 1

8
I 0I 0

¢
Q(0) ¡ ®2 ¡1

4
b2 ¡ 3

8
b21
¢
Q(0) for s < s0;

(C.27b) Q(2s) = 0 at s = s0;

where

(C.28a) Q(2a)s + 1
2
Q(2a)
xx = 1

2
®b1(´ ¡ ±)(xQ(0)x ¡Q(0)) for s < s0;
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(C.28b) Q(2a) = 0 at s = s0;

and where

(C.29a) Q(2b)
s + 1

2Q
(2b)
xx = (´ ¡ ¹́)xQ(1)xx ¡ 1

2

£
À2¡ ¹À2 ¡ 3¹́(´ ¡ ¹́)¤ x2Q(0)

xx for s < s0;

(C.29b) Q(2b) = 0 at s = s 0:

Once we have solved these equations, then the option price is then given by

(C.30a) V (t; f; a) = [f ¡ K]+ + 1
2
"®
p
B(0)B("®z)I1=2("z)e

1
4"

2ab1±z
2

J;

where

J =

Z sex

s

Q(0)(s; x; s 0) ds0 + "
Z sex

s

Q(1)(s; x; s 0) ds0 + "2
Z sex

s

Q(2s)(s; x; s 0) ds0(C.30b)

+"2
Z sex

s

Q(2a)(s; x;s 0) ds0 + "2
Z sex

s

Q(2b)(s; x; s0)ds 0 + ¢ ¢ ¢ :

The termsQ(1); Q(2a); and Q(2b) arise from the time-dependence of the coe¢cients ´(s) and À(s). Indeed,
if ´(s) and À(s) were constant in time, we would have Q(1) ´ Q(2a) ´ Q(2b) ´ 0, and the solution would be
just Q(s) ´ Q(0) + "2Q(2s). Therefore, we will …rst solve for Q(1); Q(2a); and Q(2b), and then try to choose
the constants ± , ¹́; and ¹À so that the last three integrals are zero for all x. In this case, the option price
woud be given by

(C.31a) V (t; f; a) = [f ¡K ]+ + 1
2 "®

p
B(0)B("®z)I1=2("z)e

1
4"

2ab1±z
2
Z sex

s

Q(s)(s; x; s0)ds0;

and, through O("2), Q(s) would be the solution of the static problem

(C.31b) Q(s)s + 1
2
Q(s)xx = ¡ 3

4
"2ab1±Q

(s) ¡ "2¹À2 ¡1
4
I 00I ¡ 1

8
I 0I 0

¢
Q(s) ¡ "2®2 ¡1

4
b2 ¡ 3

8
b21
¢
Q(s) for s < s0;

(C.31c) Q(s) = ±(x) at s = s0:

This is exactly the time-independent problem solved in Appendix B. See equations B.42, B.43a, and B.43b.
So if we can carry out this strategy, we can obtain option prices for the dynamic SABR model by reducing
them to the previously-obtained prices for the static model.

C.2.1. Leading order analysis. The solution of C.24a, C.24b is Gaussian:

(C.32a) Q(0) = G(x=
p
¢)

where

(C.32b) G(x=
p
¢) =

1p
2¼¢

e¡x
2=2¢ ; ¢ = s0 ¡ s:

For future reference, note that

Gx = ¡ x
¢
G; Gxx =

x2 ¡¢
¢2

G; Gxxx = ¡x
3¡ 3¢x
¢3

G;(C.33a)

Gxxxx =
x4 ¡ 6¢x2 + 3¢2

¢4
G; Gxxxxx = ¡x

5 ¡ 10¢x3 + 15¢2x

¢5
G;(C.33b)

Gxxxxxx =
x6 ¡ 15¢x4 + 45¢2x2 ¡ 15¢3

¢6
G:(C.33c)
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C.2.2. Order ". Substituting Q(0) into the equation for Q(1) and using C.33a yields

Q(1)s + 1
2Q

(1)
xx = (´ ¡ ¹́)

x3 ¡¢x
¢2

G(C.34)

= ¡(s 0 ¡ s)(´ ¡ ¹́)Gxxx ¡ 2(´ ¡ ¹́)Gx for s < s 0;

with the “initial” condition Q(1) = 0 at s = s0. The solution is

Q(1) = A(s; s0)Gxxx + 2As0(s; s 0)Gx(C.35a)

=
@

@s0

n
2A(s; s0)Gx(x=

p
s0 ¡ s

o
;(C.35b)

where

(C.35c) A(s; s0) =
Z s0

s

(s0 ¡ ~s)[´(~s)¡ ¹́]d~s; As0(s; s
0) =

Z s0

s

[´(~s)¡ ¹́]d~s:

This term contributes

(C.36)
Z sex

s

Q(1)(s; x; s0)ds0 = 2A(s; sex)Gx(x=
p
sex ¡ s)

to the option price. See equations C.30a, C.30b. To eliminate this contribution, we chose ¹́ so that A(s; sex) =
0:

(C.37) ¹́ =

R sex
s (sex ¡ ~s)´(~s)d~s

1
2
(sex ¡ s)2

:

C.2.3. The "2Q(2a) term. From equation C.28a we obtain

Q(2a)
s + 1

2
Q(2a)
xx = ¡ 1

2
®b1(´ ¡ ±)x

2 +¢

¢
G(C.38)

= ¡ 1
2
®b1(´ ¡ ±)¢Gxx ¡ ®b1(´ ¡ ±)G

for s < s0, with Q(2a) = 0 at s = s0. Solving then yields

(C.39) Q(2a) =
@

@s0

(
®b1

Z s0

s

(s0 ¡ ~s)[´(~s)¡ ± ]d~s G(x=ps0 ¡ s)
)
:

This term makes a contribution of

(C.40)

Z sex

s

Q(2a)(s; x; s0)ds0 = ®b1

µZ sex

s

(sex ¡ ~s)[´(~s)¡ ± ]d~s
¶
G(x=

p
sex ¡ s)

to the option price, so we choose

(C.41) ± = ¹́ =

R sex
s
(sex ¡ ~s)[´(~s)¡ ±]d~s

1
2
(sex ¡ ~s)2

:

to eliminate this contribution.
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C.2.4. The "2Q(2b) term. Substituting Q(1) and Q(0) into equation C.29a, we obtain

(C.42a) Q(2b)
s + 1

2Q
(2b)
xx = (´ ¡ ¹́)AxGxxxxx + 2(´ ¡ ¹́)As0xGxxx ¡ 1

2·x
2Gxx ;

for s < s0, where

(C.42b) · = À2(s)¡ ¹À2 ¡ 3¹́[́ (s)¡ ¹́]:
This can be re-written as

Q(2b)s + 1
2Q

(2b)
xx = ¡(´ ¡ ¹́)A[¢Gxxxxxx + 5Gxxxx ] ¡ 2(´ ¡ ¹́)As0 [¢Gxxxx + 3Gxx ](C.43)

¡ 1
2
·[¢2Gxxxx + 5¢Gxx + 2G]

Solving this with the initial condition Q(2b) = 0 at s = s0 yields

Q(2b) = 1
2A

2(s; s0)Gxxxxxx + 2A(s; s
0)As0(s; s

0)Gxxxx(C.44)

¡3
Z s0

s

[´(~s)¡ ¹́]A(~s;s 0)d~sGxxxx + 3A2s0(s; s0)Gxx

+ 1
2

Z s0

s

[s 0 ¡ ~s]2·(~s)d~sGxxxx +
5
2

Z s 0

s

[s 0 ¡ ~s]·(~s)d~sGxx +

Z s0

s

·(~s)d~s G:

This can be written as

Q(2b) =
@

@s0

(
4A2(s; s0)Gss + 12

Z s 0

s

[́ (~s)¡ ¹́]A(~s; s 0)d~s Gs(C.45)

¡2
Z s0

s

(s 0 ¡ ~s)2·(~s)d~sGs +

Z s0

s

(s0 ¡ ~s)·(~s)d~s G
)

Recall that ¹́ was chosen above so that A(s; sex) = 0. Therefore the contribution of Q(2b) to the option price
is Z sex

s

Q(2b)(s; x; s 0)ds 0 =
µ
12

Z sex

s

[́ (~s)¡ ¹́]A(~s; sex)d~s ¡ 2
Z sex

s

(sex ¡ ~s)2·(~s)d~s
¶
Gs(x=

p
sex ¡ s)(C.46)

+

µZ sex

s

(sex ¡ ~s)·(~s)d~s
¶
G(x=

p
sex ¡ s);

where · = À2(s)¡ ¹À2 ¡ 3¹́[́ (s)¡ ¹́].
We can choose the remaining “e¤ective media” parameter ¹À to set either the coe¢cient ofGs(x=

p
sex ¡ s)

or the coe¢cient of G(x=
p
sex ¡ s) to zero, but cannot set both to zero to completely eliminate the contri-

bution of the term Q(2b). We choose ¹À to set the coe¢cient of Gs(x=
p
sex ¡ s) to zero, for reasons that will

become apparent in a moment:

¹À2 =
1

1
3 (sex ¡ ~s)3

½Z sex

s

(sex ¡ ~s)2À2(~s)d~s ¡ 3¹́
Z sex

s

(sex ¡ ~s)2[´(~s)¡ ¹́]d~s(C.47)

+6

Z sex

s

Z s1

s

s2[´(s1) ¡ ¹́][́ (s2)¡ ¹́]ds2ds1:

Then the remaining contribution to the option price is

(C.48a)
Z sex

s

Q(2b)(s; x;s 0)ds 0 = 1
2
¹·(sex ¡ s)2G(x=

p
sex ¡ s);
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where

(C.48b) ¹· =
1

1
2 (sex ¡ s)2

Z sex

s

(sex ¡ ~s)[À2(~s)¡ ¹À2]d~s:

Here we have used Since
R sex
s (sex ¡ ~s)(´ (~s)¡ ¹́)d~s = 0 to simplify C.48b.

C.3. Equivalent volatilities. Let us gather the results together. The static problem C.31b - C.31c
is homogeneous in time, so its solution Q(s) depends only on the time di¤erence ¿ ¡ ¿ 0. The option price is
thus

(C.49) V (t; f; a) = [f ¡K]+ + 1
2
"®
p
B(0)B("®z)I1=2("z)e

1
4"

2ab1¹́z
2

½Z ¿

0

Qs(~¿; x)d~¿ + 1
2
"2¿2¹µ G(x=

p
¿)

¾
;

where Qs(¿; x) is the solution of

(C.50a) Qs¿ ¡ 1
2Q

s
xx =

3
4 "
2ab1¹́Q

s + "2¹À2
¡
1
4 I

00I ¡ 1
8I
0I 0
¢
Qs + "2®2

¡
1
4 b2 ¡ 3

8 b
2
1

¢
Qs for ¿ > 0;

(C.50b) Qs = ±(x) at ¿ = 0:

Here we have replaced ± with ¹́. See C.41.Since the static solution is Gaussian to leading order, Qs =
G (x=

p
¿), we can re-write the option price as

(C.51a) V (t; f; a) = [f ¡ K]+ + 1
2
"®
p
B(0)B("®z)I1=2("¹Àz)e

1
4"

2ab1 ¹́z
2

Z ¿ex

0

Qs(~¿; x)d~¿

through O("2), where

(C.51b) ¿ex = ¿ + 1
2
"2¿2¹µ:

The partial di¤erential equation C.50a, C.50b, and option price C.51a are identical to the equations obtained
in Appendix B for the original non-dynamic SABR model, provided we make the identi…cations

¿ex = ¿ + "2
Z ¿

0

~¿ [À2(~¿)¡ ¹À2]d~¿;(C.52a)

º ! ¹́=¹À; º ! ¹À:(C.52b)

See equations B.42 - B.43b. Following the reasoning in the preceding Appendix now shows that the European
call price is given by the formula

(C.53) V (t; f; K ) = (f ¡ K)N ( f ¡K
¾N
p
¿ex

) + ¾N
p
¿ exG( f ¡ K

¾N
p
¿ex

);

with the implied normal volatility

¾N (K ) =
"®(f ¡K)R f
K

df 0

C(f 0)

¢
µ

³

x̂(³)

¶
¢(C.54a)

½
1 +

·
2°2 ¡ °21
24

®2C 2 (fav) +
1
4 ¹́®°1C (fav) +

2¹À2 ¡ 3¹́2
24

+ 1
2
¹µ

¸
"2¿ ex + ¢ ¢ ¢ :
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where

(C.54b) ³ =
¹À

®

f ¡K
C(fav)

; x̂(³) = log

0@
q
1¡ 2¹́³=¹À+ ³2 ¡ ¹́=¹À + ³

1 ¡ ¹́=¹À

1A ;

(C.54c) fav =
p
fK; °1 =

C0(fav )
C(fav)

; °2 =
C00(fav)
C (fav)

;

(C.54d) ¹µ =

R ¿
0
~¿ [À2(~¿)¡ ¹À2]d~¿

1
2
¿2

:

Equivalently, the option prices are given by Black’s formula with the e¤ective Black volatility of

¾B(K) =
® log f=KR f
K

df 0

C (f 0)

¢
µ

³

x̂(³)

¶
¢(C.55)

½
1 +

·
2°2 ¡ °21 + 1=f 2av

24
®2C2 (fav) +

1
4 ¹́®°1C (fav) +

2¹À2 ¡ 3¹́2
24

+ 1
2
¹µ

¸
"2¿ex + ¢ ¢ ¢

Appendix D. Analysis of other stochastic vol models.
Adapt analysis to other SV models. Just quote results?

Appendix E. Analysis of other stochastic vol models.
Adapt analysis to other SV models. Just quote results?
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